H(t)=-5t^2+15t+2

Simple and best practice solution for H(t)=-5t^2+15t+2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H(t)=-5t^2+15t+2 equation:



(H)=-5H^2+15H+2
We move all terms to the left:
(H)-(-5H^2+15H+2)=0
We get rid of parentheses
5H^2-15H+H-2=0
We add all the numbers together, and all the variables
5H^2-14H-2=0
a = 5; b = -14; c = -2;
Δ = b2-4ac
Δ = -142-4·5·(-2)
Δ = 236
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{236}=\sqrt{4*59}=\sqrt{4}*\sqrt{59}=2\sqrt{59}$
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-2\sqrt{59}}{2*5}=\frac{14-2\sqrt{59}}{10} $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+2\sqrt{59}}{2*5}=\frac{14+2\sqrt{59}}{10} $

See similar equations:

| 5x–9=2x+3= | | (x+4/2x+1)=0 | | (2x+1)(x−1)+16x-8=0 | | 7-2m=m+4 | | 5^x-7=87 | | 15+1.5x=21 | | 15+1.5x-21=0 | | 2x-+4=4x-2 | | 15+3/2x=21 | | -2x^2-6x+16=0 | | 48+(11x-5)+(9x-3)=180 | | 10x+85+(8x+5)=180 | | y-5=3y-4 | | (7x-10)+3x+90=180 | | 5+8x=50+(1/2)x | | 14x-3x2=16 | | 2+27x=17x+2 | | 18x-2=360 | | 15x-26=360 | | x2–6x+135=0 | | 5x+1=-5x+10= | | 4x-2x=7. | | A=4000(1+0.0425t) | | 2x+51=501 | | x-8+x=58 | | 4x=524 | | x=500(1+.02) | | x=2500(1+.0725)^25 | | x=2500(1+.0725) | | 3x2x=1x2x= | | x=83000(1+.06)^5 | | 8x-5x=16 |

Equations solver categories